
Abstract

BRIGGS, CHRISTOPHER MICHAEL. Multicycle Adaptive Simulation of Boiling Water 
Reactor Core Simulators. (Under the direction of Paul J. Turinsky).

Adaptive simulation (AS) is an algorithm utilizing a regularized least squares methodol-

ogy to correct for the discrepancy between core simulators predictions and actual plant mea-

surements [1]. This is an inverse problem that will adjust the cross sections input to a core 

simulator within their range of uncertainty to obtain better agreement with the plant measure-

ments. The cross section adjustments are constrained to their range of uncertainty using the 

covariance matrix of the few-group cross sections and in imposing the regularization on the 

least squares solution. This few-group covariance matrix is obtained using the covariance 

matrix of the multi-group cross sections and the corresponding lattice physics sensitivity 

matrix. To perform the adaption, one must also have the sensitivity matrix of the core simula-

tor. Constructing the sensitivity matrix of both the lattice physics code and core simulator 

would be a daunting task using the traditional brute-force method of computing a forward 

solve for a perturbation of every input. To avoid this, a singular value decomposition (SVD) is 

used to construct a low rank approximation of the covariance matrices, thus drastically reduc-

ing the number of required forward solves.

Until now, AS has been used on a single depletion cycle to correct for discrepancies result-

ing from errors introduced by incorrect cross sections only. Adapting to a single depletion 

cycle means that the cross sections of cycle m were adjusted so that the core simulator better 

predicts the actual measurements of cycle m (and future cycles if the algorithm is robust). 

This, however, does not account for the reloaded burnt fuel number density errors at the 

beginning-of-cycle (BOC) m. By definition a burnt assembly has been used and depleted in a 
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previous cycle. If adaption changes the cross sections of that burnt assembly in cycle m, those 

cross sections should have also been changed in any cycle preceding m which would have 

resulted in different BOC m number densities. This means that the number densities obtained 

using the original cross sections are not consistent with the newly adapted cross sections.

Hence, the number densities input to a core simulator are not the actual values in the reac-

tor’s fuel assemblies for the burnt fuel. This discrepancy in isotopics is another component to 

the discrepancy between the core simulator and actual observables. This means that the adap-

tion algorithm is adjusting cross sections to account for number density errors.

It is the goal of this research to 1) remove these inconsistencies between the adapted cross 

sections and the burnt fuel BOC n number densities, and 2) ensure that adjusting cross sec-

tions to make up for number density errors does not corrupt the adaption. To do this, we 

assume that to best predict cycle n (by correcting both cross sections and BOC number densi-

ties of cycle n), one must adapt cycles m through n-1 simultaneously, where cycle m is the 

cycle in which the oldest assembly in cycle n is a fresh assembly. After adaption, the cross 

sections must be used to deplete from cycle m to n. This will remove the number density 

errors in two ways: 1) burnup healing, and 2) beginning the depletion of fresh assemblies in 

cycles m through n-1 with the correct cross sections. To ensure the cross sections adjustments 

are not overcompensating for the number density errors, we restrain their adjustment to stay 

near one standard deviation of their a prior values.
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CHAPTER 1: INTRODUCTION 1
Chapter 1:  Introduction

In the present day nuclear power industry, a reliable reactor core simulator for light water 

reactor (LWR) cores is a crucial part of reactor design, economics, and safety. The 

development of such a crucial tool is no trivial task, requiring design, construction, and testing 

that can take years. These steps can require an exorbitant amount of time and money before 

any worthwhile results are produced that justify the effort dedicated. Furthermore, even when 

the core simulator is complete, it will inevitably have its own limitations that prevent it from 

completely reproducing actual real plant data. To avoid this scenario, and for multiple reasons 

to be discussed later, there has been an effort to improve the input data to existing core 

simulators so that the simulator’s prediction of a reactor’s behavior are closer to that of the 

real world reactor. Throughout this paper, this effort is known as adaptive simulation.

Adaptive simulation is a methodology that makes use of both real plant data and core 

simulator output to change (adapt) the simulator inputs in such a way as to reduce the 

discrepancy between the two. Crucial to the process, adaption can be executed without 

changing any of the models used within the core simulator. In fact, adaption can account for 

different modeling algorithms. It was shown in previous work by Abdel-Khalik and Turinsky 

that adaptive simulation is capable of improving the agreement between two simulator’s that 

use different thermal hydraulic models [1]. This is evidence that adaption can account for the 

shortcomings of a model’s ability to correctly replicate the actual behavior inside the core. 

This enables the continued use of currently available core simulators rather than devoting 

precious resources to altering a currently available simulator or developing a new, superior 

simulator. Furthermore, note that a preliminary uncertainty analysis study [4] for a boiling 

water reactor (BWR) indicated that the differences between predicted and measured values of 
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CHAPTER 1: INTRODUCTION 2
core reactivity and power distribution are of the same magnitude as the uncertainties in these 

core attributes that originate due to nuclear data uncertainties, implying that pursuing the 

development of higher fidelity core simulator models may not prove beneficial.

This improvement in the accuracy of the simulator’s output is accomplished by modifying 

its inputs in such a way as to improve the simulator’s agreement with plant data. For core 

simulators, this includes microscopic cross sections and thermal hydraulic data. Due to the 

discrete nature of the simulator input and output data, the adaption can be performed by using 

well developed linear algebra techniques. The methods used to alter the input data prevent any 

adapted values from changing to a nonphysical value (such as a negative cross section), which 

would render the method ineffective. Further, adaption of input data must factor the 

uncertainty associated with this data by assuring the adapted data values are probable. It is 

important to note that even though the isotopic number densities are also inputs to a core 

simulator, these values are not adapted since they are not independent of the other inputs. If 

the number densities were adapted at the same time as the cross sections, there is no guarantee 

that the adapted number density values will be within the range predicted by the Bateman 

depletion equations using the adapted nuclear data.

Current adaption capability treats the change in number densities due to the change in 

adapted input data by solving the Bateman equations. However, if completing adaption on 

reload cores, which by definition contain partially burnt fuel from earlier cycles, one must 

address the issue that the isotopic number densities associated with the burnt fuel, which are 

input data, would be inconsistent with the adapted core simulation. To get the best adaption 

for cycle n, one would need to go all the way back and adapt cycle one followed by a cycle 

one depletion with the newly adapted cross sections. Starting at cycle one avoids the issue of 
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CHAPTER 1: INTRODUCTION 3
not using consistent number densities for burnt fuel since cycle one only contains fresh fuel. 

Cycle one adaption is done to update the number densities to correspond with the adapted 

cross sections, providing consistent number densities for burnt fuel that appears in the cycle 

two input data. One would successively repeat this process all the way to cycle n using the 

core simulator to ensure that the cycle n number densities are consistent. Since this is 

impractical for reactors that have been operating for a substantial time due to the high number 

of reload cycles and lack of pedigree of experimental data, the focus of this research is on the 

impact of starting the adaption on a cycle that is not the first cycle of a reactor’s life, i.e. cycle 

m (where 1 < m < n), and it’s impact on the simulation of future cycles greater than m, in 

particular cycle n. This is accomplished by iterating, if necessary to correct for linearization 

errors associated with the adaption method, an adaption and depletion sequence starting at a 

cycle close to n. These iterations should eventually converge to the consistent number 

densities with respect to the adapted cross sections.

Due to simplicity of the pressurized water reactor (PWR) core relative to the BWR core, 

the fidelity of PWR core simulators is superior to that of BWRs. Currently, the prediction 

accuracy of BWR core attributes is such that large design margins are necessary to account for 

uncertainties, which adversely impacts power plant economics, e.g., cost of electrical energy 

generated. Therefore, the focus of adaptive simulation has been on BWRs, since these systems 

have the most room for improvement.

1.1: Scope of Work

The subsequent sections will discuss the general concepts and characteristics of core 

simulators and adaptive simulation. First the basics of core simulators, including types, inputs, 
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CHAPTER 1: INTRODUCTION 4
and sources of errors will be explored. This will be followed by the desired traits of the 

adaptive method and how we propose to satisfy these traits. The chapter will be concluded by 

discuss the benefits of cross section adjustment and its history.

The following chapter will present a terse derivation of the mathematics behind adaptive 

core simulation. Chapter three will describe the virtual approach used to create the measured 

observables, as opposed to using actual plant data. In Chapter Four, several cases will be 

investigated to determine the capabilities of adaption. Lastly, Chapter Five and Six will 

summarize our work and present some ideas for the future of adaptive core simulation.

1.2: Core Simulators Overview

As previously indicated, technological complexity of present day nuclear reactors has 

made the nuclear power industry heavily reliant on reactor simulators. Small scale tests and 

experiments are still vital to developing empirical models and collecting data, but these 

models inevitably serve as the foundation of some sort of computational recreation. This 

happens largely because repeatedly performing the small scale tests can quickly become 

impractical due to the time and costs of such procedures, and possible lack of applicability of 

scaling to the commercial reactor. Due to their importance to the nuclear industry, it is 

worthwhile to cover the fundamentals of core simulators.

1.2.1 : Core Simulator Basics

In general, the main purpose of a core simulator is to accurately model the neutronic and 

thermal-hydraulic behavior of a nuclear reactor. The core of a reactor is composed of many 

structures, including fuel assemblies, control rods, structural support, and monitoring 

equipment, to name a few. To provide reliable results, the core simulator must account for a 
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CHAPTER 1: INTRODUCTION 5
multitude of properties for these materials such as dimensions, compositions, and nuclear 

properties of the compositions for example. Using this information, the simulator then 

determines the distribution of neutrons, or neutron flux. The neutron flux, referred to as the 

flux from here on, is used to determine neutron interaction rates inside various media that 

make up the reactor core. The flux and reaction rates can then be used to calculate a wide 

variety of parameters used in design, control, safety, and other reactor fields, such as power 

distribution and material behavior.

1.2.2 : Various Core Simulators

One type of reactor core simulator is the online simulator. This is most important at a 

power plant site while the reactor is in operation. The reactor operators take advantage of the 

online simulator for a wide variety of functions. For example, online simulators aid in the 

monitoring of the current state of the reactor and predict if the reactor state will be shifting to 

an unsafe configuration. If the reactor is moving towards an unsafe situation, the simulator 

can help to correct this by advising the operator to manipulate the control systems. If the 

control systems aren’t enough, the reactor will be shut down by activating the appropriate 

safety systems. Training simulators, another type of simulator, are used to train future and 

current reactor operators through the simulations of accidents and other various pedagogues. 

The other type of reactor simulator is the design simulator. This type performs an innumerable 

number of functions beyond that of the online and training simulators. The design simulator is 

used in the design process to determine the core loading pattern (LP), the control rod program 

(CRP) for the current fuel cycle, interpret physics tests, and evaluate various operational, 

thermal, and safety design margins.
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CHAPTER 1: INTRODUCTION 6
1.2.3 : Core Simulator Input

Now that we have introduced the concepts of reactor core simulators, it will be beneficial 

to further elaborate on the type of simulator adapted in this research. This includes the 

assorted models employed, the input data required, the output obtained, and a brief discussion 

of the work that must be done to generate these input data. This will lead to where the 

simulations can go wrong and why. Combining the characteristics of the simulator with the 

impact and causes of the error will immediately reveal the driving force behind pursuing 

adaptive techniques.

To determine the flux, a variety of phenomena must be numerically modeled by the 

simulator. Most importantly, this includes neutron physics and thermal-hydraulics due to the 

nonlinear behavior of the former with respect to the latter and vice versa. One essential 

component of the neutron physics is the cross section. This is a fundamental parameter 

required for any calculation involving neutron interactions. The cross section of a material (or 

group of materials such as a fuel assembly) can be evaluated so that it describes the 

probability of neutron interaction (e.g. scatter or absorption) within a media based only on the 

incident energy of the neutron and current state (such as burnup and temperature) of the 

interacting media. The evaluation of these cross sections for a core simulator is performed by 

lattice physics codes. For a core simulator, these codes take the detailed cross section energy 

dependence and combine it with the complex geometry (from a traversing neutron’s 

perspective) of a fuel assembly to collapse all the cross section information of the entire 

assembly down to a set of more manageable numbers. These new manageable numbers 

homogenize the spatial detail of the corresponding assembly that would be impractical to 

model within the core simulator. For instance, for a given assembly burnup, instead of the 
www.manaraa.com



CHAPTER 1: INTRODUCTION 7
cross sections being energy dependent in an almost continuous fashion, the lattice physics 

code produces cross sections that are held constant over several energy ranges, but done so as 

to preserve reaction rates. Also, the cross section is now spatially dependent on an assembly 

by assembly basis, rather than dependent on its exact location inside a specific lattice position 

in the core.

The number of cross sections input to a core simulator is extremely large. The exact 

number will depend on the models used within the simulator. For example, this can depend on 

the number of isotopes tracked in the fuel assemblies, the number of discrete neutron energy 

groups used, the number of time steps over the cycle length, and so on. Also, since the state of 

fuel at a given core location is constantly changing inside the core due to burnup, control rod 

movement, and thermal-hydraulic conditions, a cross section is evaluated for a variety of 

states [6]. The core simulator can then interpolate between the state point values to get the 

cross section that best represents the current state of the fuel at a specific core location. The 

end result is that the full set of cross sections alone constitute a copious amount of input data.

1.2.4 : Simulation Errors

In general, all complex numerical computations suffer from the same base set of 

weaknesses due to finite precision floating point arithmetic and modeling errors. These can be 

significant sources of error even with the current advances in computer technology. It is 

impossible to eliminate the effects of round-off error and its propagating effects on 

computations that require a high precision of accuracy even with employment of iterative 

correction methods. It is common practice to introduce simplifications to models employed to 
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CHAPTER 1: INTRODUCTION 8
reduce the run time to something practical relative to frequency of use. Core simulators are no 

exception to these issues.

To begin, there are neutron transport models that are capable of describing the flight 

behavior of individual or ensemble average of neutrons within the reactor core. This can be 

done stochastically, i.e., Monte Carlo, or deterministically, e.g., Sn method, with time, spatial, 

angular, and energy dependence of the flux represented with detail. However, this is 

computationally prohibitive to use in a routine fashion. Nuclear engineers developed a simpler 

model known as few-group, diffusion theory that uses the energy and angular integrated 

behavior of the neutrons to determine the flux. The assumptions made to employ the diffusion 

simplification come with a price however. On top of these diffusion simplifications, there are 

many numerical methods available to solve the few-group diffusion equations, each with their 

own strengths and weaknesses.

The simulator must also be able to handle the simplifications of the lattice physics codes. 

Many of these simplifications are done to aid diffusion theory. The detailed energy 

dependence of the cross sections is removed so that the few-group diffusion equations can be 

solved for the few-group flux. The fine spatial detail of the fuel assemblies is also removed 

from the cross sections by creating assembly averaged cross sections to implement diffusion 

theory on a coarse mesh. Also, the collapsed cross sections generated by the lattice physics 

codes are computed using vast amounts of experimentally tabulated data. These data bring 

along its own experimental uncertainties that propagate through the core simulator. As noted 

earlier, a preliminary assessment has indicated that for BWR cores, nuclear data uncertainties 

appear to introduce uncertainties in key core attributes of comparable magnitude to difference 
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CHAPTER 1: INTRODUCTION 9
in predicted and measured values of these attributes. This implies that other sources of 

uncertainties, such as due to modeling and numerical methods, may be of less significance.

1.2.5 : Simulator Output

The outputs of a core simulator that are important to adaption can be divided into two 

categories: core observables and core attributes. Core observables are reactor quantities 

measured by in-core instrumentation such as in-core detectors. These detectors are located 

throughout the BWR core by-pass in flow channel corners that do not contain control rods. It 

is these instrument readings that the core simulator is adapted to. The cross sections are 

changed in such a way that the core simulator predicted observables better agree with the 

plant observables.

 Core attributes differ from core observables in that they are not directly measured. 

Examples of core attributes include local power peaking and thermal margins. It is crucial for 

an adapted simulator to also be capable of correctly predicting these quantities. These terms 

will be used to describe the associated output for the remainder of the paper.

1.3: Adaptive Simulation

As has already been indicated, adaptive simulation for core simulators is the process of 

using real plant data and core simulator output to adjust the simulator input in such a way as to 

improve the agreement between the two. All of the simulator’s inadequacies create a discrep-

ancy between the simulator’s output and the collected data of an actual plant. Adaptive simu-

lation is used to minimize the effects of the input data errors of a core simulator without 

altering any of the simulator’s design. To be capable of successfully utilizing an adaptive 

approach, the simulation must have certain general qualities (fidelity, robustness, and practical 
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CHAPTER 1: INTRODUCTION 10
run times). If it does, the potential benefits of adaptive simulation go beyond merely a simula-

tor that better matches real plant behavior. It is the pursuit of these three qualities that is the 

subject of this research. The following expands on these ideas.

1.3.1 : Necessary Traits

As previously indicated, the nuclear reactor simulator has become a ubiquitous part of 

nuclear design and operation. The examples given are only a small fraction of the many ways 

researchers are using simulators to develop and test better ways to overcome the latest 

obstacles of the nuclear industry. One obvious fact that was never mentioned, but needs 

discussion, is that all of the research utilizing adaptive simulations is worthwhile only if a 

capable simulator is available. Before one can reap the benefits of an adapted simulator, there 

are a number of required traits of the final product. Several important characteristics (among 

many) of an adapted simulator, for its use to be viable to engineers, include: high fidelity, 

robustness, and practical run times. The difficulty with globally quantifying each of these 

terms is that they are all relative to the purpose of the simulator. For the current intentions, 

fidelity denotes the ability of an adapted simulator to accurately predict the measured 

observables. Robustness is the ability of the adapted simulator to accurately predict core 

attributes which are not directly observed and for core operating conditions beyond those for 

which the core simulator had measurements to adapt to. This could be the measured 

observables recorded at future times for example [1]. Lastly, one could say that a practical run 

time would be one that is substantially shorter than the frequency of the simulator’s intended 

use. 
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It is the last two items of this list (robustness and run time) that brings us to what is driving 

the current research, recognizing that as a side product improved fidelity should also be 

obtained. An adapted simulator will be extremely robust if it can accurately predict the core 

behavior of future cycles. To do this, the isotopic number densities of an adapted cycle must 

be updated to be within the range of the Bateman equations using the newly adapted cross 

sections. The Bateman equations are used to compute the change in isotopics as a fuel 

assembly is depleted. This can be done by starting the adaption at the first cycle, and 

sequentially adapting and depleting all the way to the cycle of interest, but this will violate the 

practical run time trait if the cycle of interest is relatively high. This may also be impossible if 

the required data from previous cycles in unavailable or of questionable pedigree to be 

adapted for whatever reasons. To resolve both of these issues, it is the subject of this research 

to attempt starting the adaption at a cycle close to the cycle of interest. To accomplish this, if 

the cycle of interest is cycle n and the cycle where the adaption will be started is cycle m 

(where 1 < m < n), then cycles m through n-1 will be simultaneously adapted at one time. To 

update the number densities, the simulator will then use the adapted cross sections to deplete 

from cycle m to n-1. As will be explained later, the adaption over cycles m to n-1 may need to 

be recomputed, e.g., iterated, since the adaptive method to be utilized is only first-order 

accurate. Once iterations are completed, these final cross sections and number densities can 

now be used to predict cycle n and beyond. This process shrinks the run time needed for a 

robust adaption. Now all three traits have been satisfied.
www.manaraa.com
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1.3.2 : Adaption Benefits

The ability to reduce the error between simulation and actual plant measurements has 

significant impacts on nuclear reactor economics. The more accurate the simulator, the tighter 

the thermal margins can be that limit important characteristics of the reactor design due to the 

reduced uncertainty in the safety calculations. This can reduce the conservatism that has to be 

built into reactor design to compensate for simulator inadequacies. A more accurate simulator 

can reduce capital, operations and maintenance, and fuel costs. For example, if an adapted 

simulator is used to simulate a future cycle, one can potentially reduce the conservatism of the 

thermal margins, allowing a reduction in fuel cycle costs via a more aggressive core design or 

allow the core to be run at higher powers producing more electric energy to provide 

consumers.

Adaption is not only limited to changing the input parameters to provide the output with 

the smallest difference with observables. It can also be used to: estimate the bounds on the 

range of acceptable model parameters; estimate the formal uncertainties in the model 

parameters; show the sensitivity of the solution to perturbations in the data; determine the best 

set of data suited to estimate a certain set of model parameters; and compare different models. 

[1]

1.3.3 : Previous Adaption Methods

There have been previous attempts at adjusting input data to get better agreement based on 

measured data. During the 1970s, researchers tried to manipulate the cross sections needed for 

fast reactors. The researchers used integral experiments to get the ‘actual’ plant data for which 

the cross sections would be adjusted to. An integral experiment is a critical configuration of 
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assemblies that operates at nearly zero power. The configuration of the assemblies is a small 

scale version of an actual fast reactor core.

There are several fundamental differences between the previous attempts at data 

adjustment and the current adaption algorithm. For one, the current method uses actual plant 

data, instead of these integral experiments. The disadvantage to this is the actual plant data 

may be distorted by feedback effects such as depletion and thermal-hydraulics. The data may 

also be corrupted if an instrument is out of calibration, or even worse had unknowingly failed. 

The advantage, however, is that there is a copious amount of core follow data from currently 

operating plants. Another difference is the way the data adjustment is performed. For the 

integral experiments, the researchers took advantage of Data Adjustment Techniques (DAT). 

Due to the discrete nature of the simulator input and output data, this adaption takes advantage 

of Discrete Inverse Theory (DIT). For ill-posed problems such as this one, DIT is much more 

robust due to its regularization approach.
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Chapter 2: Adaptive Simulation

Since the focus of this research is not on the development of adaption itself, the mathemat-

ical details will only be reviewed - for full development see previous work [2]. The first part 

of this chapter is a mathematical description of the general least squares problem adaption is 

designed to solve. This will be followed by our multicycle adaption algorithm. In this discus-

sion, it is assumed that the reader has a good understanding of linear algebra, least squares 

methodology, and inverse theory concepts.

2.1: Least Squares Development

To develop the least squares problem, it will be advantageous to first revisit the single 

cycle adaption, and then introduce our development of multicycle adaption. To begin, adap-

tive simulation of a core simulator is a substantial least squares problem in which the goal is to 

minimize the difference between the predicted and measured observables while simulta-

neously restricting the adapted parameters to their uncertainty bounds. Let the core simulator 

be represented as the following vector nonlinear equation:

 2-1

where  is a vector of dimension k whose components are the selected core parameters to be 

adapted. The 0 in the vector  represents the known vector (i.e., core simulator input vector) 

that will be adapted to reduce the mismatch between the measured and predicted observables. 

The is a vector of dimension q whose components represent the predicted core observables. 
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c
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0
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CHAPTER 2: ADAPTIVE SIMULATION 15
The 0 in the vector  is the calculated observable vector resulting from operating on . The 

adaption algorithm adjusts the parameters according to the following minimization problem:

 2-2

where

 2-3

The input parameters for which the uncertainty is required in  include the few-group 

cross sections and other neutronic parameters such as the diffusion coefficient. Since the 

uncertainty information of these input parameters is not readily available in the required few-

group form, it must be calculated before the solution of Eq 2-2 can be found. Starting from 

scratch, the values are available in the very detailed ENDF point-wise format. The PUFF-III 

code developed at ORNL is able to propagate the point-wise uncertainties to the multi-group 

level. This is not sufficient though because the core simulator uses few group parameters. Pre-

vious work by Jessee[5] developed the capability using ORNL codes to compute the desired 

few-group covariance matrix and propagating the few-group uncertainties through the core 

simulator and its associated preprocessor codes. In this method, the rank deficiency of the 

covariance matrices is utilized to reduce the computational burden of such a calculation. The 

rank deficiency makes it beneficial to approximate the action of the covariance matrices by 

another set of matrices of much smaller size, the SVD factorization. The SVD factors can be 

calculated directly without ever storing or evaluating the original large matrices. 

d
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Cp  (the core parameters covariance matrix)=
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The covariance matrix for the observables  is currently an input to the code that per-

forms the adaption. As will be explained later, since plant data are not actually used as the 

observables, a representative Gaussian noise error is introduced into the simulated measured 

core observables that are used for adaption (keff and nodal powers). The magnitude of the 

Gaussian noise error is reflected in .

With the covariance data of the parameters and observables no longer unknowns, the min-

imization problem given in Eq 2-2 can be solved using adaptive simulation. The minimization 

equation can be rewritten as [3]

 2-4

The first term is known as the misfit term and the second is the regularizaiton term. The  in 

the previous equation is know as the regularization parameter. Before further developing the 

multicycle least squares problem, it is worthwhile to explore this very important parameter 

that is used to diminish the adjustment of input parameters that could corrupt the robustness of 

the adaption. 

2.1.1 : Regularization Parameter

It is the goal of adaption to focus on parameters that have a high uncertainty and strong 

sensitivity. This is so the difference between the measured and calculated observables can be 

minimized by adjusting important parameters that have room for substantial adjustment 

within uncertainty bounds. Adaption makes use of  to single out these parameters [8]. To 

Cd( )

Cd

min Wd
T

dm
Θ p( )–( )

2
α2 Wp

1–
p p

0
–( )

2
+

⎩ ⎭
⎨ ⎬
⎧ ⎫

α

α

www.manaraa.com



CHAPTER 2: ADAPTIVE SIMULATION 17
show the regularization parameter’s impact, we must introduce the SVD. If we denote the 

Jacobian of the  operator as , then the SVD of  can be written as

 2-5

where  is a matrix composed of the left singular vectors,  a matrix of the 

singular values, and  a matrix of the right singular vectors. If we project  and 

 along the singular vectors as  and , then the un-regular-

ized minimum norm least squares solution can be written as

 2-6

where  is the  singular value of the  operator,  is the difference (in the left singular 

vector subspace) between the  measured and predicted observable, and  is the resulting 

size of the adjustment of the  input parameter (in the right singular vector subspace). The 

regularization parameter is employed by modifying the first equation in Eq 2-6 to be

 2-7

where

 2-8
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CHAPTER 2: ADAPTIVE SIMULATION 18
The  in Eq 2-7 is the standard deviation of the measurement noise. The action of the regular-

ization filtering can be seen by way of the following example: 

• Regularization is used to filter out those parameters whose adjustment will be corrupted by 

the large amplification of inherent noise. First, rewrite the  as , 

where f represents the noise free component and n represents the noise term. Equation 2-6 

can then be rewritten

 2-9

Here it can be seen that if the singular value is small, the noise of the measurement is 

severely amplified, which can instantly ruin the adaption’s fidelity and robustness. If  is 

large in the sense , the  will be small and thus reduce the parameter adjust-

ment in Eq 2-7.

The effect of a large  in the above example is to make the  in Eq 2-6 as small as possi-

ble for parameters with high noise and/or low uncertainty. Adjusting such parameters will ruin 

both the fidelity and robustness of an adapted simulator. In the current work, the regulariza-

tion parameter is determined by ‘trial and error.’ This involves adapting the cross sections 

with various magnitudes of  and selecting the best results based on whichever metric of 

interest is most important to the work being done (the RMS cross section adjustment in stan-

dard deviations for this work, to be discussed later). One could also produce an ‘L-curve’ to 

determine the best . The L-curve is a plot in which the regularization term is on the oridnate 

axis and the misfit term is on the abscissa.  This curve is shaped like an L, and the optimum  

is located in the bend of the L, known as the knee.
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2.2: Least Squares Continued

Returning to the least squares development, if one defines  as the Jacobian of the core 

simulator such that

 2-10

 2-11

then the minimization problem can be rewritten as

 2-12

 If the regularization parameter is zero, then Eq 2-12 reduces to the standard least squares 

problem that solely uses the observables to adjust the parameters. If the regularization param-

eter approaches infinity the misfit term becomes negligible and Eq 2-12 keeps the a prior val-

ues. The mathematical methods used to solve this minimization problem can be found in [7]. 

To extend this to a multi-cycle adaption, the minimization equation is modified to contain the 

misfit terms for each cycle to be adapted and can be written as

 2-13
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2.3: Completing the Adaption

Adaptive simulation solves the minimization problem given in Eq. 2-11. The purpose of 

formulating such a multicycle problem is because a single cycle adaption is not sufficient to 

fully update all of the core simulator inputs. This brings up two questions:

1) Why can only certain inputs be adapted?, and

2) Why are multiple cycles necessary?

The answer to the first question is because there are other inputs (number densities) to the 

core simulator that are dependent on the cross sections (the independent parameters). This 

dependency is a problem because if the dependent parameters are simultaneously adapted 

with their independent counterparts, there is no guarantee they will be within the range of their 

governing equations. The governing equation is the relationship that correlates the dependent 

parameters to the independent parameters. For example, consider isotope j such that it is only 

destroyed in a core, e.g. U235. Its number density is given by the associated Bateman depletion 

equation

j cycle number =

w
2
j

the weight of cycle j=

∆dj
m

the difference between the measured and predicted observables=

    for cycle j

Aj the Jacobian of cycle j=

C†
p the generalized inverse of the parameter covariance matrix=

C†
d j, the generalized inverse of the observables covariance matrix=

α regularization parameter=
∆p vector of cross sections adjustments=
www.manaraa.com



CHAPTER 2: ADAPTIVE SIMULATION 21
 2-14

where

(This equation has spatial and time (burnup) dependence for all terms appearing in the equa-

tion, but we suppress notationally those dependencies for clarity.) Now if nuclear data are 

adjusted via adaption,  is directly changed in the adaption process and  is changed due 

to its indirect dependence on . This will change the time dependence of  in Eq. 2-

13, implying that  is dependent upon nuclear data adjustment and cannot be adjusted 

independently. The correct procedure is to obtain the adapted cross sections alone and then 

solve the depletion equations using the new cross sections to update the number densities. If 

the number densities are simultaneously adapted with the cross sections, the resulting number 

densities may not correspond to the values that would be determined using Eq. 2-13. 

To answer the second question, note that if  and other isotopes’ number densities 

change, so do macroscopic cross sections and hence flux; that is, the Bateman equations and 

neutron diffusion equation are coupled in a nonlinear fashion. In previous work on adaptive 

simulation, this coupling effect is addressed via a predictor-corrector method. However, previ-

ous work was limited to a single cycle. If the adaption is robust, the adapted nuclear data 

should also apply to earlier reload cycles than the cycle being adapted. The implication is that 

dN j( )

dt
------------ σ

j( )
a φN j( )  with the intial condition N j( ) 0( )– N

j( )
0

= =

N j( ) isotopic number density=

σ
j( )

a isotopic one-group absorption cross section=

φ neutron scalar flux=
t time=

σ
j( )

a φ

σ
j( )

a N j( ) t( )

N j( ) t( )

N j( ) t( )
www.manaraa.com
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the number densities associated with partially burnt fuel loaded into the reload cycle being 

adapted should be changed to be consistent with the adapted nuclear data. This aspect of adap-

tion was not addressed in the earlier work.

To put it another way, note that the initial condition , which corresponds to the 

beginning of cycle condition given in Eq. 2-13, was not updated in the adaption. All of the 

subsequent number densities that are updated by using the adapted cross sections are based on 

the ‘un-updated’ initial condition. Since the initial number densities of fresh fuel are correct, 

this is only a concern for burnt fuel. Realizing that the initial number densities of one cycle are 

the final number densities of the previous cycle, to obtain the correct initial number densities, 

one would need to start adapting from the very first cycle of the reactor’s history, and adapt all 

the way to the cycle of interest. This would provide correct initial conditions for the cycle of 

interest. For reactors that have been operating for a substantial amount of time (practically 

every reactor in the U.S), this would 1) be computationally impractical, and 2) the quality of 

the old measured data used in the adaption would be questionable at the very least. This bur-

den is the driving force behind the current research. 

Our hypothesis is that only starting several cycles before the cycle of interest, cycle n, is 

sufficient to get the correct initial number densities in cycle n. This is based on the fact that the 

number densities of all fresh fuel assemblies in cycle n are correct. This leaves only the 

burned assemblies in cycle n of interest to be corrected. To account for these burned assem-

blies, we propose to start the adaption at the cycle, denoted cycle m, in which the oldest fuel 

assembly in cycle n was a fresh assembly. This way the adaption spans all cycles in which 

every assembly in cycle n was a fresh assembly at some point. In most cases, this only means 

N j( ) 0( )
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going back around three cycles to start the adaption. This is much better than going back fif-

teen cycles for reactors that have been operating for extended periods of time.

Since the proposed adaption to remove number density errors is only first-order accurate 

due to linearizing the dependence of observables or parameters, an iterative procedure will be 

employed. The iterations will proceed as follows:

1) Adapt all cycles starting in cycle m and ending in cycle n-1 such that burnt fuel 

assemblies used in cycle n are loaded as fresh assemblies in one of these earlier 

cycles.

2) Using the adapted parameters, deplete all adapted cycles to update the number den-

sities and determine the new calculated observables vector, i.e., 

3) Check for convergence (see below for convergence method)

4) If converged, stop

5) If not converged, relinearize the problem (redetermine ) about the updated param-

eter values and return to step 1.

To determine whether or not to continue the iterations, a stopping criteria must be satisfied. 

This is done by using the misfit term in Equation 2-12. If the misfit terms of the linear model 

are negligibly far from the misfit terms of the core simulator, then no iteration would be nec-

essary. This is known as the linearization error. As will be discussed later, we are restricting 

our average adjustments to be near one standard deviation. If the linearization error is small at 

the upper limit of adjustments we are comfortable with, then updating the Jacobian would not 

provide much benefit.
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Once this convergence is satisfied, we believe it is acceptable to assume the cross sections 

and associated number densities have been completely updated. This will allow for a better 

simulator prediction of cycles n and higher. As discussed in the introduction, a better predic-

tion of future cycles will allow for substantially reducing cost by ways such as reducing fuel 

enrichment, increasing power density, and reducing control rod use.
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Chapter 3: Design and Virtual Cores

As discussed in Chapter 2, the cross sections of cycles m through n-1 are adjusted within 

their uncertainties such that the predicted observables (core simulator output) better agree 

with the measured observables (plant data). There are two options available for providing the 

measured observables: 1) real plant data and 2) artificial plant data. Real plant data is actual 

measurements taken by the in-core detectors while the reactor is operating. For BWRs these 

detectors include local power range monitors (LPRMs) and traversing in-core probes (TIPs). 

Such detectors are generally located throughout the core between flow channels without con-

trol rods.

Conversely, artificial plant data is ‘measured’ observables generated by perturbing the 

inputs to a core simulator and simulating the LPRM and TIP readings, or any other measure-

ment to be used in the adaption. For the research at hand, it was chosen to use the artificial 

plant data approach for multiple reasons. First, by doing this, we know the right answer since 

we produced it. This can be very beneficial in exploratory research such as this when there 

still may be undiscovered influences on the adaption results. This helps remove any unknown 

sources of error. Furthermore, there is no issue with detector drift and/or improper detector 

calibration. Finally, and most importantly, this allows for the easy introduction of cross sec-

tion and number density errors. This makes it almost trivial to easily test the fidelity and 

robustness of the adaptive routine for a wide variety of cases. The set of artificially created 

measured observables is associated with what we refer to as the virtual core (VC). The set of 

predicted observables that is created using the original unperturbed cross sections is associ-

ated with what we refer to as the design core (DC).
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3.1: Cross Section Perturbations

One of the two steps in generating the VC is to perturb the microscopic cross sections of 

all the lattice types used in cycles m through n. Note that special care must be taken to uni-

formly perturb any lattices repeatedly used in multiple cycles. This must be observed since the 

base cross sections and all the branch cases associated with lattice physics calculations of a 

lattice do not change just because the cycle of depletion has changed. To perturb the cross sec-

tions, two criteria must be satisfied:

1) The cross sections must be perturbed in a consistent fashion. This is done since it would 

not be physical to arbitrarily perturb the individual cross sections independent of one 

another. There is some degree of correlation between the cross sections that must not be 

ignored. 

2) The VC must be created by perturbing only those cross sections with a sufficiently large 

uncertainty.

To fully explain how the cross sections are perturbed, the work of Jessee [5] must be 

briefly discussed. Part of their work consisted of propagating multi-group cross section uncer-

tainties through the lattice physics code to the few-group cross sections, and then propagating 

the few-group cross section uncertainties through the core simulator to the core observables. 

The sheer number of inputs and outputs to both the lattice physics code (~103) and core simu-

lator (~106) makes this a daunting task to complete using the traditional method of computing 

a forward solve for a perturbation in every input. This was overcome using low rank approxi-

mations of both the multi-group and few-group covariance matrices. After computing the 

covariance matrix of the multigroup cross sections (using ORNL PUFF-III), the few-group 

covariance matrix can be determined by
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 3-1

where  is the few-group covariance matrix,  is the multi-group covariance matrix, 

and  is the lattice physics sensitivity matrix. In determining , advantage is taken of the low 

effective rank of  making possible the need for only  forward lattice physics runs, 

where  is the effective rank of . The effective rank of a matrix is the number of sin-

gular values whose magnitude is above a user-defined value. On a side note,  is the cova-

riance matrix used in the regularization term of the minimization problem in Chapter 2.

Both of the criteria for creating the VC can be met utilizing the SVD of , 

. To consistently perturb the cross sections, we must utilize the left singular 

vectors, i.e. the columns of , called the principal directions from here on. Just like the cova-

riance matrix itself, these principal directions contain the information that correlates adjust-

ments of one cross section to the adjustment of another. The expression to consistently perturb 

the cross sections is

 3-2

where  is the vector of reference cross sections,  is the desired vector of perturbed cross 

sections,  is the set of principal directions, and  is any vector of expansion coefficients. 

Given , this satisfies the first condition of cross section adjustment since we are using the 
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covariance information contained in  to perturb the reference cross sections. Equation 3-2 

will consistently adjust all of the cross sections according to their covariances.

Now that we can adjust the cross sections in a fashion consistent with the real world phys-

ics, we must ensure that only cross sections with sufficiently large uncertainties are being per-

turbed. If we order the singular values of  in decreasing order, a precipitous drop in their 

magnitude is observed.

Figure 3.1. Singular Values vs. Principal Direction

Since the singular value of a principal direction is the variance of that direction, a very 

small singular value represents a very small uncertainty. It doesn’t make since to perturb a 

cross section that we have confidence in. The goal of adaptive simulation is to correct cross 

sections that we are uncertain about, so introducing errors in those values we have accurately 

measured would not test our adaptive algorithm since the regularization term would restrict 
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adapted values to be very close to a priori values. Thus we elect to only use a subset of  

principal directions in equation 3-2 to completely perturb those cross sections that are uncer-

tain enough to justify adjustment. To accomplish this, we constructed a vector  composed 

of perturbed principal directions denoted by the following (the parenthesis have been added to 

aid the following discussion) 

 3-3

where si is the singular value corresponding to the  principal direction,  is a random num-

ber selected from a uniform distribution,  is the effective rank of , and f is a user 

input scaling factor. Within the first set of parenthesis, we randomly scale the singular value of 

each principal direction where the random number uniformly falls between 1 and -1. Since the 

singular value of a principal direction is equal to its variance, this randomly scales the uncer-

tainty of each principal direction up to one standard deviation. We then normalize each princi-

pal direction with the infinity norm so that its largest element is one. This is then multiplied by 

the user defined scaling factor f. Normalizing and scaling the vector allows us to control the 

largest perturbation of any principal direction, equal to f. This produces two parameters avail-

able to generate different virtual cores: 1) the random seed used in generating , and 2) the 

scaling factor f. Adjusting these two inputs becomes a game of trial and error to produce a vir-

tual core that has representative perturbation sizes in core observables. Finally, as previously 

discussed, only the first r principal directions are perturbed because these are the only direc-

tions with a large enough uncertainty to warrant adjustment.
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After the perturbed cross section set has been constructed through equations 3-2 and 3-3, 

they are run through the nonlinear core model to create

  3-4

where  is the set of virtual core observables and  is the nonlinear core simulator. In real 

plants the core observables are measured using in- and out-of-core detectors. These readings 

are subject to detector noise, drift, incorrect calibration, and even detector failure. In an 

attempt to account for detector noise, 4% Gaussian noise is added to the core observables 

. Currently this includes the nodal power of every node in the core and is represented as

 3-5

where j corresponds to any component of  subject to noise (nodal powers for this 

research), and  is selected from a Gaussian distribution with a mean of zero and a standard 

deviation of 0.04.

3.2: Number Density Perturbation

As previously discussed, the goal of this research is to try to anneal out any errors in burnt 

fuel number densities in the cycle on interest. Before describing how the number density per-

turbations are introduced into the problem, it will be necessary to briefly explore the software 

employed. Once the mechanics of how the simulator transfers the number densities are clear, 

extending this to perturbing these values will be trivial.
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3.2.1 : Core Simulator Software and Design Core

Although we had access to real world cycles that we could use in our core simulator, the 

data required to introduce realistic number density errors to these cycles were not available. 

The concept of realistic number density errors will be discussed in the next section. Since 

these data were unavailable, we improvised by taking advantage of the ‘multicycle restart’ [6] 

capability of FORMOSA. At the end of a depletion, FORMOSA’s multicycle restart function 

will generate a new loading pattern and all of the required input files. This new loading pattern 

can then be depleted, and so on. To create this new loading pattern, FORMOSA stores the 

beginning-of-cycle (BOC) kinf profile of the current cycle to be depleted. After the cycle is 

depleted, the new loading pattern is generated by using the end-of-cycle (EOC) fuel and fresh 

bundle types to best match the BOC kinf profile while retaining core symmetry. 

To create the design core for our experiments, we started with a real world loading pattern 

and used the multicycle restart capability to deplete until all of the burnt fuel that was in the 

initial cycle had been discharged. This represents our initial design core cycle and initial refer-

ence number densities. Using previously established notation, this became cycle m in the mul-

ticycle adaption. Cycle n was created by continuing the multicycle depletion four more cycles. 

At this point, all of the fuel in BOC m was either discharged, or would be discharged by EOC 

n. Since the real world cycle used to initiate this depletion sequence was a cycle 12 core, 

cycles m through m-1 became cycles 15-17, and cycle n became cycle 18. Cycles 15-17 are 

used in the multicycle adaption as the design core because no burnt fuel assembly in cycle 18 

goes back farther than cycle 15. This was the basic assumption driving this research. These 

cycle notations will be used in the next chapter when the results are presented.
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3.2.2 : Introducing the Number Density Errors

Now that the multicycle approach has been introduced, the method used to introduce num-

ber density errors can be presented. To complete the VC, it is necessary to perturb the initial 

number densities of cycle m. Perturbing the cycle m BOC number densities will then propa-

gate through the subsequent cycles to perturb their number densities. One must take care to 

perturb the number densities in a manner consistent with the perturbed cross sections. This 

means the BOC m number densities should be changed relative to the size of the cross sec-

tions perturbations. It is tempting to simply randomly perturb the BOC number densities about 

their initial values; however, this would lead to a nonphysical situation because of the correla-

tion of isotopic cross sections with number densities of other isotopes. To see this, suppose 

that the cross section perturbation routine described previously leads to a decrease in the U-

238 radiative capture cross section. This indirectly implies that the Pu-239 number density 

should decrease since Pu-239 production is initiated by neutron capture in U-238. This corre-

lation can’t be applied via a random number density perturbation. Instead of a random pertur-

bation, the core simulator was used to account for these correlations between the change in the 

cross section of one isotope with the change in the number densities of other isotopes. The 

core simulator is capable of capturing these correlations contained in thermal hydraulic and 

neutronic feedbacks.

Ultimately, to introduce number density perturbations that are consistent with the cross 

section perturbations, we simply depleted from BOC 12 to EOC 18 with the perturbed cross 

sections. By the time the multicycle depletion sequence reached BOC 15, the number densi-

ties were different from those of the DC. Cycles 15 to 18, with perturbed cross sections and 
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associated perturbed number densities, served as the VC to generate measurement observ-

ables.
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Chapter 4: Results

The current adaptive method was constructed to correct for discrepancies between the 

simulator and some other set of observables induced by cross sections errors only. As dis-

cussed in Chapter 3, for this research we introduced both cross section and number density 

errors so that we could test the abilities of adaption under influences the algorithm is not 

designed to correct. The following chapter will first discuss the impacts of cross section and 

number density errors. This will be followed by an examination of the inputs to adaption and 

their impact on the cross section adjustments. Finally, the results for a the three-cycle adaption 

will be presented. This means that cycles 15, 16, and 17 are adapted to enhance the simula-

tor’s prediction of cycle 18.

4.1: Pre-Adaption Number Density Behavior

Before discussing the abilities of the proposed adaption/depletion sequence, it is necessary 

to show the core’s response to perturbing cross sections and/or number densities. The individ-

ual and combined effects of these cross section and number density errors for each cycle can 

be seen in Figures 4.1 and 4.2.

4.1.1 : Linear Response

 For each cycle in the Figures 4.1 and 4.2, there are two graphs; the first shows keff for 

each time step of the cycle and the second shows the absolute difference between the design 

core (DC) and each other core’s keff. The curves labeled ‘DC’ used the DC cross sections and 

the DC number densities. The DC curves shown are the actual set of reference responses used 

to produce the adaption results in the figures that follow. The curves labeled ‘VC(XS)’ used 
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the VC cross sections and the DC number densities. The curves labeled ‘DC(ND)’ used the 

DC cross sections and VC number densities. The curves labeled ‘VC’ used both the VC cross 

sections and number densities. The VC curves shown are the actual set of reference measure-

ments used to produce the adaption results in the figures that follow. Most importantly these 

graphs show two things: 1) the combined effect of both sources of error are linear, and 2) the 

combined effect of burnup healing and fresh fuel loading successfully anneal number density 

errors. It is crucial to the entire problem that introducing number density perturbations will 

result in a linear response. If number density perturbations introduced a substantial nonlinear 

component to the simulator’s observables, the sensitivity matrix of the simulator would be 

unable to properly adjust the cross sections. Looking at Figures 4.1 and 4.2, we can see that 

for all cycles the DC(ND) pcm error and the VC(XS) pcm error sum up to the VC pcm error. 

This means that the number density errors do not introduce any substantial nonlinearities that 

would render the Jacobian unusable.

4.1.2 : Burnup Healing and Fresh Fuel Loading

The impact of burnup healing and fresh fuel loading can be seen by comparing either ‘DC’ 

to ‘DC(ND)’ or ‘VC’ to ‘VC(XS).’ In either of these comparisons, the only difference 

between the cases is the set of number densities used in the depletions. The following discus-

sion will compare ‘DC’ to ‘DC(ND)’ since the pcm error graphs were created with respect to 

the DC. In the graphs that show the keff pcm error with the DC for each cycle, it is clear that 

the number density component of the total error decreases as the cycle depletions progress. In 

fact, the number density error has essentially disappeared by beginning-of-cycle (BOC) 17 

partly because of burnup healing and mostly due to fresh fuel loading. Burnup healing hap-
www.manaraa.com



CHAPTER 4: RESULTS 36
pens because a core has a given flux shape driven by the characteristics of the core such as the 

material cross sections and fuel loading pattern. These characteristics generate a given leakage 

profile and produce a flux shape that is not highly sensitive to changes in the initial number 

densities. This flux shape will drive the perturbed number densities towards the unperturbed 

values as the core depletes. To understand this, assume that the number density perturbations 

cause the U-235 number density at a given node to increase which will cause the U-235 mac-

roscopic cross section to also increase. For a given flux shape and magnitude, the increased 

cross section will cause the extra uranium introduced as number density errors to rapidly 

deplete back down towards the original number density. 

In addition to burnup healing, the simple act of replacing old fuel assemblies with fresh 

fuel assemblies at the time of reloading the core has the largest impact on correcting the num-

ber density errors. This happens because there are no number density errors in the fresh 

assemblies. This can be seen by observing that the decrease in error between DC and DC(ND) 

occurs between each cycle loading. Furthermore, correcting the number density errors in the 

burnt fuel will improve the flux shape in the burnt assembly. This will cascade to all of the 

neighboring assemblies and improve those assemblies’ flux shapes. This means that correct-

ing burnt fuel isotopics will improve the flux shape of any neighboring fresh assembly, which 

will improve that assemblies’ number density errors. This is cyclic, because 1) improving the 

fresh fuel power shapes will in turn improve other burnt assembly power shapes, and 2) obvi-

ously, after depletion, fresh fuel becomes burnt fuel which will then help correct the next 

batch of fresh fuel. Notably, it takes only one cycle to reduce the number density induced error 

by a factor of two. This is the case for the one-, two-, and three-cycle adaptions.
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Equally important is the fact that both DC and DC(ND), and VC and VC(XS) converge to 

DC and VC, respectively. This suggests that depleting with any given cross section set will 

remove any number densities errors by returning to the number density values to those consis-

tent with the given cross section set. This is very important because it shows that if our 

adapted cross sections match the VC cross sections, we can be guaranteed the AC number 

density errors will anneal out over several cycle depletions to their exact VC values.

4.2: Adaption Inputs

To adapt a given core, there are several input options that must be defined by the user to 

emphasize and/or constrain certain aspects of the adaption algorithm. It was necessary to 

adjust all of these inputs over a range of values in order to fully investigate the ability of mul-

ticycle adaptive simulation to minimize number density errors. To understand their impact on 

the final results, it is beneficial to review the objective function introduced in Chapter 2.

 4-1

where the terms of equation 4-1 were previously defined in Chapter 2.

4.2.1 : Regularization Parameter

The regularization parameter constrains the adjustment of the DC cross sections. As alpha 

increases, the objective function becomes highly sensitive to changes in the cross sections and 

thus restricts their adjustment. As alpha approaches infinity, the adapted cross sections are 

identical to the DC cross sections. Conversely, a low alpha value allows more freedom for 

adjustment. An alpha of zero reduces to the standard least squares problem and allows the 

algorithm to adjust the cross sections irregardless of their uncertainties.
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In the figures that will follow, the largest  was selected to keep the RMS of the cross sec-

tion adjustment around one standard deviation. Two smaller values of alpha were also used in 

the adaption to show what sort of improvement could be gained by allowing the adaption rou-

tine a little more freedom to adjust the cross sections. It was decided to keep the RMS of the 

adjustment around one standard deviation to keep the cross sections within their range of 

uncertainty. Allowing too much freedom would not be robust since the cross sections would 

be adjusted outside of their experimental range of uncertainty. Not allowing enough freedom 

would not be very useful because the cross sections would be restricted to stay near their DC 

values.

4.2.2 : keff Weight

The keff weight is a multiplier contained within . Each row of  corresponds to a 

particular observable output by the core simulator. For this research, those observables consist 

of keff and core wide nodal powers for each time step of each cycle. In the results that follow, 

a weight of 1.0 was applied to the nodal powers and the keff weight was varied. Adjusting the 

weight on keff varied the importance the adaption gave to correctly predicting keff. For exam-

ple, a large keff weight would force the adaption algorithm to focus on matching keff more than 

the nodal powers in order to optimally minimize the objective function.

To select a sample of keff weights for use in the figures that follow, a keff weight that pro-

duces good results was found by trial and error. Two more keff weights were then chosen by 

increasing and decreasing the good keff weight by one order of magnitude to ensure a wide 

range of responses.
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4.2.3 : Cycle Weights

The cycle weights of the objective function enable one to weight which cycle’s set of mea-

sured observables contribute more to the cross section adjustment. This is done by multiplying 

each cycle’s misfit term by a weight constructed from the user defined weights (discussed 

below). A large cycle weight will increase the sensitivity of the objective function to that 

cycle’s misfit term simply by increasing its magnitude relative to the other cycles. In our 

research the cycle weights in Equation 4-1 are computed by

 4-2

where  are the user defined weights for cycle i and  is a vector of the user defined 

cycle weights. The weights are computed this way for two reasons: 1) for a constant alpha of a 

3-cycle adaption, a user input of  will produce identical results to 

, and 2) for a constant alpha, a 3-cycle adaption with  will 

weight the misfit term the same as a 2-cycle adaption with  and 1-cycle adaption 

with . This is true because

 4-3

In the figures that follow, the cycle weights were selected by initially setting the weight for 

each cycle to 1.0. Keeping the weight of the first cycle at 1.0, the other cycle weights were 

gradually increased to put more and more weight on the final cycle of the adaption. This is
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meant to emphasize 1) the cycle in which we expected the errors caused by number densities 

to be the smallest, and 2) the cycle which will be transferring its assemblies to cycle 18 (the 

cycle of interest). Emphasizing the cycle with the smallest number density errors implies that 

adapted cross sections should be closer to the VC cross sections since they need not also have 

to correct as much for number density errors. Emphasizing the cycle directly before the cycle 

of interest will focus on correcting those cross sections significant to predicting the future 

cycle’s behavior.

4.3: Number Density Decrease vs. Adaption Inputs

Two parameters are introduced to quantify the reduction of the error in number densities. 

Just as with the linearity test introduced in Chapter 2, we will again use kinf to measure how 

well the number density errors are being corrected over the course of the adaption/depletion 

sequence. We use kinf because it is sensitive to the number densities that are important to core 

behavior and ignores those that don’t have much impact. This means a decreasing difference 

in kinf represents a decreasing difference in those number densities with a large influence on 

core behavior. To develop our metrics, we use kinf computed as a function of the following

 4-4
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 4-6

 4-7

k i j r s, , ,

DC
k

inf
DC

ND

i j r s, , ,
DC

XS

i j r s, , ,
,( )=

k i j r s, , ,

AC
k

inf
AC

ND

i j r s, , ,
AC

XS

i j r s, , ,
,( )=

k i j r s, , ,

VC
k

inf
VC

ND

i j r s, , ,
VC

XS

i j r s, , ,
,( )=

k i j r s, , ,

DC,ND
k

inf
DC

ND

i j r s, , ,
VC

XS

i j r s, , ,
,( )=
www.manaraa.com



CHAPTER 4: RESULTS 41
 4-8

where DCND is the set of DC number densities, DCXS is the set of DC cross sections, ACND is 

the set of AC number densities, ACXS is the set of AC cross sections, VCND is the set of VC 

number densities, VCXS is the set of VC cross sections, i is an axial node, j is a fuel assembly, 

s is a cycle used in the adaption, and r is a time step of cycle s. Using these definitions, our 

metrics of number density error can be written as

  4-9

  4-10

 where  4-11

 where  4-12

where N is the number of fuel assemblies and z is the number of axial nodes in a fuel assem-

bly. Our first measure of number density error (Equation 4-10) shows how close the adapted 

kinf resulting from AC cross sections and AC number densities (Equation 4-5) gets to the VC 

kinf (Equation 4-6). Our second measure of number density error (Equation 4-12) shows the 

behavior of kinf due to the difference in VC and AC number densities alone. To compute this 

metric, the core simulator is depleted using the adapted core (AC) cross sections to obtain the 

AC number densities. A sort of hybrid kinf is then computed using the VC cross sections and 

k i j r s, , ,

AC,ND
k

inf
AC

ND

i j r s, , ,
VC

XS

i j r s, , ,
,( )=

RMS
r s,
DC

1
N z⋅
----------- k i j r s, , ,

VC
k i j r s, , ,

DC
–( )

2

i 1=

z

∑
j 1=

N

∑= r s∈

RMS
r s,
AC

1
N z⋅
----------- k i j r s, , ,

VC
k i j r s, , ,

AC
–( )

2

i 1=

z

∑
j 1=

N

∑= r s∈

RMS
r s,
DC,ND

1
N z⋅
----------- k i j r s, , ,

VC
k i j r s, , ,

DC,ND
–( )

2

i 1=

z

∑
j 1=

N

∑= r 1 s∀=

RMS
r s,
AC,ND

1
N z⋅
----------- k i j r s, , ,

VC
k i j r s, , ,

AC,ND
–( )

2

i 1=

z

∑
j 1=

N

∑= r 1 s∀=
www.manaraa.com



CHAPTER 4: RESULTS 42
the AC number densities (Equation 4-8). The node wise RMS of this hybrid kinf is then com-

puted with the VC node wise kinf (Equation 4-12) to single out the difference between the AC 

and VC number densities. The I/O of the simulator makes it possible to compute Equation 4-

12 (and Equation 4-13) only for the first time step of each cycle. In order to see the decrease of 

the AC number density errors relative to the initial DC number density errors, these metrics 

are then normalized by the DC kinf error as follows:

 4-13

 where  4-14

It is possible to present our findings now that all metrics used to measure the number den-

sity error have been introduced. To examine the response of the number density error, the fol-

lowing subsections will hold one of the input parameters constant and vary the other two. 

4.3.1 : Constant Cycle Weight

Due to the same behavior for the constant cycle weight graphs, only case  

will be discussed here (Figures 4-3 through 4-5). The title of each graph tells the alpha used 

and the resulting RMS cross section adjustment in standard deviations. The left hand side of 

each row tells the keff weight used for all three graphs of that row. The numbers in the box at 

the bottom of the figure are the user defined weights  for every graph in the figure. 
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Figure 4.3 shows  (Equation 4-10) as the red lines and  (Equation 4-

12) as the blue lines. Both curves must be used to decipher if adaption is computing the cor-

rect cross sections and number densities. Just looking at only the red or blue line is not enough 

to interpret the results. We want two things: 1) the blue line to be as low as possible, and 2) the 

red line as close to the blue line as possible. A low blue lines suggests that the number densi-

ties of the AC have converged to those of the VC (by way of kinf) since the only difference in 

the terms of Equation 4-12 is the number densities used in the AC term. When the red line is 

close to the blue line, the AC cross sections are near those of the VC since the only difference 

between Equations 4-10 and 4-12 is the cross sections set used in the AC term. The graph sur-

rounded by a box signifies which set of inputs result in the lowest number density difference 

(blue line) at BOC 18.

Using these ideas, we can see the sensitivity of the adapted cross sections and number den-

sity errors to alpha and keff weight for a given set of cycle weights. For a keff weight of 100 or 

1,000, decreasing alpha will improve the cross section agreement and reduce the number den-

sity error. As alpha is decreased, the increased freedom to adjust cross sections, indicated by 

the increasing RMS, allows the algorithm to better match the VC cross sections. Naturally, a 

better set of AC cross sections will improve the reduction in number density errors. This trend 

does not apply to keff weight of 10,000, however. Since too much emphasis is being placed on 

keff, the cross sections do not have very much freedom for adjustment. This is supported by 

noticing that the gap between the red and blue line is essentially constant for all three alpha 

values. This similarity in the cross sections for various alphas produces the same trend and 

magnitude in the number density error (blue line).
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For a constant , the behavior is more complicated. Looking at any column of Figure 4.3, 

we can see the three possible outcomes: 1) wrong cross sections and correct number densities 

for keff weight of 100, 2) correct cross sections and correct number densities for keff weight of 

1,000, and 3) wrong cross sections and wrong number densities for keff weight of 10,000. Fur-

thermore, comparing the boxed in graph in column one with the graph directly below it shows 

that it is possible for incorrect cross sections to reduce the number density error lower than a 

better set of AC cross sections. This behavior is possible because there is infinitely many com-

binations of cross sections that can match the VC responses. In order to pick the best set of 

inputs, Figure 4.4 shows how to avoid being fooled by this behavior.

Figure 4.4 shows the weighted components of the AC misfit term in Equation 4-1 normal-

ized by the DC weighted misfit components. Note, however, that the misfit values plotted in 

Figure 4.4 were computed using the core simulator as opposed to the Jacobian. This repre-

sents the improvement in AC observables from their original DC values. The misfit term is a 

combination of the keff and nodal power misfits, written as

 4-15

where  is the keff covariance matrix,  is the nodal powers covariance matrix, and 

 is the core simulator. Equation 4-15 can be broken into these terms because the measure-

ments associated with nodal powers and keff are uncorrelated observables (meaning  is 

block diagonal). If we define the components of the misfit term in Equation 4-15 for the 

design and adapted core as 
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 since  4-16

 since  4-17

 4-18

 4-19

where , then the values shown in Figure 4.4 can be written as 

 4-20

 4-21

 In Figure 4.4, we can see that it does not make sense to select any cases using a keff 

weight of 100. Even though the AC cross section sets were able to reduce the number density 

errors more than any other keff weight (in Figure 4.3 for a constant ), the cross sections are 

incapable of predicting keff. For the  case, reducing the DC keff mismatch (blue line) to 

40% is equivalent to being around ~700 pcm away from the VC. By cycle 17, reducing the 

mismatch to 20% is equivalent to being around ~500 pcm away from the VC. However, by 

increasing the keff weight to 1,000, you can get number density error reduction comparable to 
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picking a keff weight will result in correct cross sections and a substantial reduction in number 

density errors: select the lowest keff weight that also substantially reduces the keff mismatch. 

Using Figure 4.4 to analyze the power misfit is difficult because of the noise component 

added to nodal powers. A small reduction in the nodal power misfit is misleading since adap-

tion cannot predict observables any better than the applied noise. In Figure 4.4, the  val-

ues for a keff weight of 100 and  successfully reduce the error in nodal powers to the 

noise. Knowing this, it is clear that all cases shown nearly predict the nodal powers down to 

the noise level for all adapted cycles. Adding number density errors does not corrupt the abil-

ity of the adaption algorithm to correctly predict the nodal powers. Predicting the nodal pow-

ers seems to be insensitive to both the keff weight and alpha.

All of this being said, Figure 4.5 shows that adjusting the cross sections cannot completely 

remove the number density errors. Figure 4.5 shows the  (red line) and 

 (blue line). These curves represent the AC errors normalized by the original DC 

error. It is clear that the rate of error reduction over each cycle reduces to almost zero before 

the error ever reaches zero. This means that introducing number density errors perturbs the 

core in ways the cross sections cannot correct for. This is actually beneficial, because if num-

ber density errors were indistinguishable from cross section errors, then adaption would incor-

rectly adjust cross sections for both sources of error. This unphysical adaption would not be 

robust once the number density errors have been annealed.

Figure 4.5 also shows the impact of including multiple cycles in the adaption/depletion 

sequence. Starting several cycles back allows burnup healing and fresh fuel loading to anneal 
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down the number density errors This supports our method of starting the adaption at the cycle 

where the oldest assembly in cycle n is fresh.

4.3.2 : Constant keff Weight

Due to the same behavior in the constant keff weight graphs, only the case keff 

weight=1,000 will be discussed here (Figures 4-6 through 4-8). The title of each graph is the 

alpha used and the titles of Figures 4-7 and 4-8 also include the resulting RMS cross section 

adjustment in standard deviations. The left hand side of each row tells the cycle weights 

 used for all three graphs of that row. The number in the box at the bottom of the figure 

is the keff weight used for every graph in the figure.

The rows of Figure 4.6 show what was revealed in the previous subsection; decreasing 

alpha will result in better AC cross sections. A lower alpha allows more freedom to adjust the 

DC cross sections. Since decreasing alpha produces cross sections closer to the VC cross sec-

tions, it also further reduces the number density error.

Surprisingly, for a constant , weighting the later cycles more than the earlier cycles does 

not really have an impact on the number density error. The only noticeable improvement is 

gained by increasing the weight of any cycle other than 15. The decrease in number density 

error obtained by increasing the weight of one or more cycles is essentially identical for all 

cases. This is true for all three values of alpha. 

Albeit small, changing cycle weights does impact . The impact follows the same 

trend as before. Once any cycle weight other than 15 has been increased, the impact is identi-

cal for all combinations of cycle weights. Looking at Figure 4.7, increasing the weight of the 

higher cycles increases the magnitude of  most notably for cycle 15. In fact, the 

Wi{ }

α

MF k j,

MF NP j,
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behavior seen in Figure 4.7 is probably responsible for the behavior in Figure 4.6. Increasing 

the cycle weight of the higher cycles may be resulting in a marginally smaller  and 

, which will result in a marginally smaller  and .

To bring it full circle, the marginal reductions in Figure 4.6 result in substantial reductions 

in Figure 4.8. The lower the alpha, the bigger the reduction. For , increasing the cycle 

weights will earn about a one-third reduction in the cycle 18 number density error.

4.3.3 : Constant Alpha

Again, due to the similar behavior in the constant alpha graphs, only the case  will 

be discussed here (Figures 4-9 through 4-11). The title of each graph is the keff weight used 

and the resulting RMS cross section adjustment in standard deviations. The left hand side of 

each row tells the cycle weights  used for all three graphs of that row. The number in the 

box at the bottom of the figure is the  used for every graph in the figure. 

Just as we learned from Figure 4.6, Figure 4.9 shows that varying the keff weight will con-

trol whether or not the AC cross sections correspond to the VC cross sections. Along with Fig-

ure 4.9, it is necessary to also look at the misfit terms in Figure 4.10 to determine which keff 

weight is also correctly matching the VC. Observing the number density error for a constant 

keff weight while changing the cycle weights follows the exact behavior when changing cycle 

weights in the previous section. The only improvement is gained when the cycle weights are 

compared to . The results are virtually identical when comparing any other set 

of the cycle weights. The same holds for Figure 4.11.

MF k 16,

MF k 17, RMS
r s,
AC RMS

r s,
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α 5=

α 10=
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α
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4.3.4 : Linearization Error

In Chapter 2, we introduced the comparison used to determine whether or not an iteration 

was required. This metric compares how well the keff and nodal power misfits predicted by 

the Jacobian match the keff and nodal power misfits predicted by the core simulator. If the 

misfits from the respective models are close to one another, then the cross sections have not 

been adjusted outside the first-order approximation of the Jacobian. Since this is the differ-

ence between the linear and nonlinear model, this is called the linearization error and was 

measured by comparing equations 4-20 and 4-21 to

 4-22

 4-23

where

 4-24

 4-25

noting that the Jacobian is being used here instead of the core simulator. Since the linear mis-

fits computed using Equations 4-22 and 4-23 are so close to those of 4-20 and 4-21, they will 

not be plotted. Their values would look identical to all graphs in Figures 4.4, 4.7, and 4.10 

meaning the Jacobian  closely approximates the core simulator  for the adjustments 

of all cases shown. Since the linearization error is negligible at the upper bound of adjust-

MFLIN
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ments that we are comfortable with (~1 standard deviation), iterating would not provide any 

substantial gain.

4.4: Summary

In summary we can see that number density errors do not corrupt the fidelity of adaption. 

The figures which display the misfit values show that adaption is capable of adjusting the 

cross sections even in the presence of number density errors so that the AC observables 

approach the VC observables. Since it is possible to get the correct misfit values with the 

wrong cross sections, comparing the  to  verified that the AC cross sec-

tions approached the VC cross sections with the proper keff weight. Furthermore, to ensure the 

resulting cross sections were within their experimental uncertainty, the standard deviation 

RMS of cross section adjustments was kept near 1.0.

In addition to the sustained fidelity, number density errors do not corrupt the robustness of 

adaption. This can be seen by using the adapted cross sections to predict cycle 18. Since cycle 

18 was not adapted, this will ensure the cross sections can correctly predict core observables 

under conditions not included in the adaption. The first graph in Figure 4.12 shows keff of the 

DC, VC, and AC for cycle 18. The second graph shows the DC-VC and AC-VC pcm error. 

Figure 4.13 shows the core wide nodal power RMS for each time step of cycle 18. These val-

ues were computed as

 4-26

RMS
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AC RMS
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 4-27

 4-28

where  represents the nodal power of node i, of assembly j, at time step r of core k.   

Here VC* is the virtual core observables with no noise added. The notation of the other cores 

follows as previously defined, where DC is the design core, AC is the adapted core, and VC is 

the virtual core. Figures 4.12 and 4.13 were created using , a keff weight of 

1,000, and .

Lastly, the graphs that show , , and their normalized counterparts dem-

onstrate that it is not completely necessary to return to cycle 1 to remove number density 

errors. Starting the adaption/depletion sequence several cycles before the cycle of interest is 

all that is needed to reduce the number density error as low as the adapted cross section set 

will allow. Fortunately, the reduction in number density error is generally greater than 50% 

and can be up to 75% for a keff weight of 1,000 (Figure 4.8). 
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Figure 4.1. Number density and cross section errors vs. depletion
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Figure 4.2. Number density and cross section errors vs. depletion
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Figure 4.3.  (red) and  (blue) reduction
for constant cycle weight
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Figure 4.4. keff (blue) and nodal power (red) misfit for constant cycle weight
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Figure 4.5.  (red) and  (blue) reduction
for constant cycle weight
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Figure 4.6.  (red) and  (blue) reduction for constant keff weight.
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Figure 4.7. keff (blue) and nodal power (red) misfit for constant keff weight.
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Figure 4.8.  (red) and  (blue) reduction for constant keff weight
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Figure 4.9.  (red) and  (blue) reduction for constant alpha.
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Figure 4.10. keff (blue) and nodal power (red) misfit for constant alpha.
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Figure 4.11. Number density reduction for constant alpha
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Figure 4.12. Cycle 18 keff and pcm error for each core
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Figure 4.13. Nodal power RMS error:  (blue),  (green), and 

 (black)
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Chapter 5: Conclusions

To summarize the findings, multicycle adaptive simulation is capable of partly removing 

the burnt fuel number density errors induced by adjusting cross sections. There are two 

sources of number density errors:

• 1) Errors that arise from the simulator’s inability to correctly predict the isotopics of the 

actual plant fuel assemblies. The number densities input to any core simulator will never be 

identical to those of the actual fuel in the real world core if the simulator’s cross sections are 

wrong. These errors in number densities influence the adaption since the algorithm is using 

cross section adjustments to account for discrepancies caused by differences in isotopics.

• 2) Errors that arise because the burnt fuel isotopics of any assembly are inconsistent once 

that assemblies’ cross sections are modified via adaption. This is because number densities are 

dependent on the cross section set used to deplete. Once the set changes at cycle n, it should 

have also changed in the previous cycles’ depletions. The induced error exists because re-

depleting with the adapted cross sections will result in different number densities than the 

number densities corresponding to the original cross section set.

To remove the first source of error and better predict any future cycle n, thus enhancing 

robustness, the induced number density errors were reduced by performing a multicycle adap-

tion. This was accomplished by simultaneously adapting cycles m through n-1, where cycle m 

is the cycle in which the oldest assembly in cycle n was fresh.

To update inconsistent set of number densities with the adapted cross sections, the adapted 

cross sections were used to deplete from cycle m to n. By the time the depletion sequence 

reaches cycle 18, the number densities have been corrected to match the set of adapted cross 

sections. This happens through burnup healing and fresh fuel loading.
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If adaption were able to exactly predict the VC cross sections, both sources of error would 

be removed simultaneously during the depletion using the adapted cross sections. Updating 

the number densities to be consistent with the adapted cross sections would provide the exact 

number densities of the real fuel. However, with the current capabilities of adaption, this can 

never happen because the presence of instrument noise, the nonlinear components of the core 

simulator, and the number density errors that exist in burnt fuel at BOC where adaption begins 

prevent adaption from ever obtaining the exact cross sections.

In conclusion, although the exact cross sections are not obtained, the algorithm does adjust 

the cross sections in a fashion that reduces both the discrepancy between the measure and pre-

dicted observables, and reduces the error in number density. It was found that using multiple 

cycles further improves the reduction in number density errors. This is crucial to completing 

the necessary traits of an adapted core simulator: fidelity, robustness, and short run times. The 

fidelity was confirmed by using the adapted cross sections to nearly reproduce the observables 

of the virtual core. Robustness was justified by using the adapted cross sections to predict 

cycle 18, a cycle that was not included in the adaption. Lastly, it was shown that only several 

cycles were required to reduce the errors in number densities as low as possible. This means 

that starting the adaption at cycle 1 of a core, where there is only fresh fuel and hence no num-

ber density errors, is unnecessary. To ensure the cross sections were not overadjusted because 

of the number density errors, a regularizaiton parameter was selected to constrain the adjust-

ments to stay near one standard deviation.
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Chapter 6: Future Work

Although this research provided further insight into the capabilities of adaptive simula-

tion, there were several assumptions and simplifications made that should be removed to fur-

ther understand the limits of the algorithm. The most obvious simplification to remove is the 

method of perturbing a simulator to produce the virtual core observables. The true test of 

adaption will come when actual plant data is used to adjust the cross sections used in the sim-

ulator. Furthermore, we used keff and nodal powers as our set of observables. In reality, nodal 

powers are not observables. Before actual plant data are utilized, one should repeat the work 

reported upon here using keff, linear power range monitors (LPRM), and traveling in core 

probes (TIP) as core observables of the VC. Lastly, the background cross sections were 

ignored in this work due to the nonphysical nature of their adjustment. The simple solution to 

correct this problem is to modify the simulator to track the isotopes contained within the back-

ground cross section.

Also, over the course of this work, there have been several new ideas of how to remove 

the number density error component. The first is to correlate a change in number densities 

with a change in cross sections. With this information, one could use the difference in observ-

ables to adjust both the cross sections and number densities of burnt fuel input to the core sim-

ulator in the first cycle adaption is being completed on.

The other idea is to remove the number density errors is called ‘sliding adaption.’ To per-

form sliding adaption, one would start the adaption at a cycle before m, using the notation 
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consistent with the preceding chapters. This adaption would start at an arbitrary cycle k, such 

that k<m. If we take k=12, then sliding adaption would be executed as follows

where each bracket in the above figure represents a multicycle adaption. The number of cycles 

included in each bracket abides by the same rule used in this work: the oldest assembly in the 

first cycle outside the bracket was a fresh assembly in the first cycle of the adaption. This 

sequence of adaptions will use the adapted cross sections to continuously update the begin-

ning-of-cycle (BOC) number densities in each subsequent adaption. This means that the BOC 

13 number densities computed in the first adaption would become the BOC 13 number densi-

ties used in the second adaption, and so on. By the time adaption step 4 is reached, we expect 

that the BOC number densities would be much closer to the VC number densities than if the 

fourth adaption was the only adaption (as in this research).

Finally, this work used only two fuel bundle designs in all the cycles examined. Real 

power plants have multiple bundle designs, introducing new designs nearly every reload 

cycle. This situation is believed to present a more demanding test for adaptive simulation, so 

definitely should be studied as done in this work.

 12             13             14             15             16             17             18

 1
 3

 2
 4
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